Task 1 (W8 - 10 Marks) Code The Class Shell And Instance Variables For Unit Offered In A Faculty. The (2024)

Computers And Technology High School

Answers

Answer 1

The code defines a class called `Unit` with instance variables representing attributes of a unit offered in a faculty. It includes getters, setters, and a constructor to initialize the instance variables.

Here is the code for the `Unit` class with the specified instance variables:

```java

public class Unit {

private String unitCode;

private String unitName;

private int creditHour;

private String offerFaculty;

private boolean offeredThisSemester;

// Constructor

public Unit(String unitCode, String unitName, String offerFaculty) {

this.unitCode = unitCode;

this.unitName = unitName;

this.creditHour = 6; // Default credit hours

this.offerFaculty = offerFaculty;

this.offeredThisSemester = false; // Not offered by default

}

// Getters and setters for instance variables

public String getUnitCode() {

return unitCode;

}

public void setUnitCode(String unitCode) {

this.unitCode = unitCode;

}

public String getUnitName() {

return unitName;

}

public void setUnitName(String unitName) {

this.unitName = unitName;

}

public int getCreditHour() {

return creditHour;

}

public void setCreditHour(int creditHour) {

this.creditHour = creditHour;

}

public String getOfferFaculty() {

return offerFaculty;

}

public void setOfferFaculty(String offerFaculty) {

this.offerFaculty = offerFaculty;

}

public boolean isOfferedThisSemester() {

return offeredThisSemester;

}

public void setOfferedThisSemester(boolean offeredThisSemester) {

this.offeredThisSemester = offeredThisSemester;

}

}

```

In the above code, the `Unit` class represents a unit offered in a faculty. It has instance variables `unitCode`, `unitName`, `creditHour`, `offerFaculty`, and `offeredThisSemester` to store the respective attributes of a unit. The constructor initializes the unit with the provided unit code, unit name, and offering faculty. The default credit hour is set to 6, and the unit is not offered by default (offeredThisSemester is set to false). Getters and setters are provided for accessing and modifying the instance variables.

To learn more about Getters and setters click here: brainly.com/question/29762276

#SPJ11

Related Questions

A new bank has been established for children between the ages of 12 and 18. For the purposes of this program it is NOT necessary to check the ages of the user. The bank's ATMs have limited functionality and can only do the following: . Check their balance Deposit money Withdraw money Write the pseudocode for the ATM with this limited functionality. For the purposes of this question use the PIN number 1234 to login and initialise the balance of the account to R50. The user must be prompted to re-enter the PIN if it is incorrect. Only when the correct PIN is entered can they request transactions. After each transaction, the option should be given to the user to choose another transaction (withdraw, deposit, balance). There must be an option to exit the ATM. Your pseudocode must take the following into consideration: WITHDRAW . If the amount requested to withdraw is more than the balance in the account, then do the following: Display a message saying that there isn't enough money in the account. O Display the balance. Else 0 Deduct the amount from the balance 0 Display the balance DEPOSIT . Request the amount to deposit Add the amount to the balance . Display the new balance BALANCE . Display the balance

Answers

Here's the pseudocode for the ATM program with limited functionality:

mathematica

Copy code

PIN := 1234

balance := 50

Display "Welcome to the Children's Bank ATM"

Display "Please enter your PIN: "

Input userPIN

While userPIN is not equal to PIN:

Display "Incorrect PIN. Please try again."

Input userPIN

Display "PIN accepted. What would you like to do?"

Repeat:

Display "1. Withdraw"

Display "2. Deposit"

Display "3. Check Balance"

Display "4. Exit"

Input choice

If choice is equal to 1:

Display "Enter the amount to withdraw: "

Input withdrawAmount

If withdrawAmount is greater than balance:

Display "Insufficient funds in the account."

Display "Current balance: ", balance

Else:

balance := balance - withdrawAmount

Display "Amount withdrawn: ", withdrawAmount

Display "New balance: ", balance

Else if choice is equal to 2:

Display "Enter the amount to deposit: "

Input depositAmount

balance := balance + depositAmount

Display "Amount deposited: ", depositAmount

Display "New balance: ", balance

Else if choice is equal to 3:

Display "Current balance: ", balance

Else if choice is equal to 4:

Display "Thank you for using the Children's Bank ATM. Goodbye!"

Exit loop

Else:

Display "Invalid choice. Please try again."

Display "Would you like to perform another transaction? (Y/N)"

Input continueTransaction

Until continueTransaction is not equal to 'Y' or 'y'

Please note that this pseudocode assumes a sequential execution environment where the user's input is taken through a command-line interface or a similar mechanism.

Learn more about pseudocode here:

#SPJ11

CHALLENGE ACTIVITY 10.2.1: Enter the output of multiple exception handlers. 375510.2350218.qx3zqy Jump to level 1 Type the program's output Input user_input = input() while user_input != 'end': try: # Possible ValueError divisor = int(user_input) if divisor < 0: # Possible Name Error # compute() is not defined print (compute (divisor), end='') else:

Answers

The output of the given program will depend on the input provided by the user. If the user enters a non-negative integer, the program will print the result of the "compute()" function applied to that integer. If the user enters any other input, the program will raise a ValueError exception.

The given code snippet demonstrates the use of exception handling in Python. Let's break down the code and understand how the output will be generated based on different scenarios.

First, the program initializes the "user_input" variable by taking input from the user using the input() function. The while loop continues until the user enters 'end' as the input, indicating the termination condition.

Within the loop, the program enters a try block, which encapsulates the code that may raise exceptions. Inside the try block, the program attempts to convert the user's input into an integer using the int() function and assigns the result to the "divisor" variable.

If the user enters a non-negative integer, the program proceeds to the next line, which tries to call a function named "compute" with the "divisor" as an argument. Here, we assume that the "compute()" function is defined elsewhere in the code. The program then prints the result of this function using the print() function with the "end=''" argument, which ensures that the output is not followed by a newline character.

On the other hand, if the user enters anything other than a non-negative integer, the int() function will raise a ValueError exception. In such a case, the program jumps to the except block, which handles the exception. The except block checks if the value of "divisor" is less than zero. If it is, the program attempts to print the result of the "compute()" function, which will raise a NameError since the function is not defined.

In summary, the output of the program will depend on the user's input. If the user enters a non-negative integer, the program will execute the "compute()" function and print the result. If the user enters any other input, a ValueError exception will be raised, and if the entered integer is less than zero, a NameError exception will also be raised. The actual output will be the output of the "compute()" function or the error messages raised by the exceptions.

To learn more about output

brainly.com/question/14227929

#SPJ11

Watchman-Allocation-For-Security Problem: (100 pts)
Imagine that you are a security officer and a guest president’s visit to your country is planned. Your
responsibility is to decide about allocation of watchmansto junction points of a single storey building having
several hallways. Each watchman situated at an hallway junction is responsible from watching all the
hallways connected to the junction point and inform you about possible insecure event that may happen.
In order to minimize your government’s expenditure, you need to achieve your allocation task by assigning
minimum number of watchmans to the junction locations.
i. Design an algorithm that aims to solve the watchman-allocation-for-security problem
efficiently. Write down a report that explains each step of your design solution, clearly (30
points)
ii. Implement the algorithm that you designed in part(i). The format of your sample input and
output is given below. Do NOT hard-code the sample problem input instance below but
read the sample input either from the screen or from a text file (60 points)
iii. Analyze your algorithm’s time complexity SAMPLE INPUT:
11 // Number of hallway junctions of the single storey building ()
2 4 5 // The junction IDs to which Junction #1 is connected through an hallway
1 // The junction IDs to which Junction #2 is connected through an hallway
5 6 // The junction IDs to which Junction #3 is connected through an hallway
1 5 8 // The junction IDs to which Junction #4 is connected through an hallway
1 3 4 // The junction IDs to which Junction #5 is connected through an hallway
3 7 10 // The junction IDs to which Junction #6 is connected through an hallway
6 11 // The junction IDs to which Junction #7 is connected through an hallway
4 9 // The junction IDs to which Junction #8 is connected

Answers

The watchman-allocation-for-security problem involves determining the minimum number of watchmen needed to secure a single-story building with multiple hallways. A watchman stationed at a hallway junction is responsible for monitoring all connected hallways and reporting any security concerns. To solve this problem efficiently, an algorithm can be designed as follows:

1. Create a graph representation of the hallway junctions and their connections.

2. Initialize an empty set to store the allocated watchmen.

3. Sort the hallway junctions in descending order based on the number of connections.

4. Iterate through each junction:

a. If the junction is not already allocated a watchman, assign a new watchman to it and add it to the allocated set.

b. Mark all connected junctions as allocated.

5. The number of watchmen allocated is the size of the allocated set.

The problem is approached by representing the hallway junctions and their connections as a graph, where each junction is a node and the connections are edges. The algorithm prioritizes allocating watchmen to junctions with the highest number of connections first to ensure maximum coverage. By iterating through each junction and checking if it has been allocated a watchman, we can assign a new watchman if needed and mark the connected junctions as allocated. Finally, the number of watchmen allocated is determined by the size of the allocated set.

This algorithm efficiently solves the watchman-allocation-for-security problem by minimizing the number of watchmen needed while ensuring adequate coverage of the building. It optimizes resource allocation and reduces government expenditure. The time complexity of the algorithm depends on the specific implementation and the efficiency of graph operations such as node and edge traversal.

To learn more about Algorithm - brainly.com/question/21172316

#SPJ11

Q.3 (a) The bit sequences 1001 and 0111 are to be transmitted on a communications link between two intelligent devices. For each of the methods Hamming(7,4) code and Even parity product code (a1) Calculate the transmission code-words (a2) If the most significant bit of the first bit sequence is corrupted (inverted) during the transmission, show how this error may be detected and corrected

Answers

In this scenario, we have two bit sequences, 1001 and 0111, that need to be transmitted between two intelligent devices. We will consider two error detection and correction methods:

Hamming(7,4) code and Even parity product code. We need to calculate the transmission code-words for each method and demonstrate how the error of an inverted most significant bit can be detected and corrected.

1. Hamming(7,4) Code:

The Hamming(7,4) code is an error detection and correction code that adds three parity bits to a four-bit data sequence. This results in a seven-bit transmission code-word. To calculate the transmission code-word for the first bit sequence (1001), we follow these steps:

- The four-bit data sequence is embedded in the transmission code-word, with parity bits occupying specific positions.

- The positions of the parity bits are determined based on powers of two (1, 2, and 4) in the code-word.

- Each parity bit is calculated by considering a specific set of data bits.

- The calculated parity bits are inserted into their corresponding positions in the code-word.

If the most significant bit (MSB) of the first bit sequence is inverted during transmission, the error can be detected and corrected using the Hamming(7,4) code. The receiver can perform parity checks on specific positions to identify the error. The error can then be corrected by flipping the received bit at the detected position.

2. Even Parity Product Code:

The Even parity product code is a simple error detection code that appends a parity bit to a bit sequence. The parity bit is set to ensure that the total number of ones in the sequence (including the parity bit) is even. To calculate the transmission code-word for the first bit sequence (1001), we perform the following steps:

- Count the number of ones in the four-bit data sequence.

- Append a parity bit to the sequence to make the total number of ones even.

- The resulting five-bit code-word is transmitted.

If the most significant bit of the first bit sequence is inverted during transmission, the error can be detected but not corrected using the Even parity product code. The receiver can perform a parity check on the received code-word to identify the error. However, as the code does not provide error correction capabilities, the error cannot be corrected automatically. The receiver can request retransmission of the data sequence to obtain the correct information.

Learn more about intelligent devices here:- brainly.com/question/15581990

#SPJ11

A PART file with Part-number as the key filed includes records with the following Part-number values: 23, 65, 37, 60, 46, 92, 48, 71, 56, 59, 18, 21, 10, 74, 78, 15, 16, 20, 24, 28, 39, 43, 47, 50, 69, 75, 8, 49, 33, 38. a. Suppose that the search field values are inserted in the given order in a B+-tree of order p = 4 and Pleaf = 3; show how three will expand and what the final tree will look like. b. Suppose the following search field values are deleted in the order from the Bt-tree, show how the tree will shrink and show the final tree. The deleted values are: 75, 65, 43, 18, 20, 92, 59, 37. 3. Optimize the execution plan of the following query using rule based optimization. SELECT D.num, E.Iname FROM EMPLOYEE E, DEPARTMENT D WHERE E.sex = 'M' AND D.num = E.num AND D.mgr_ssn = E.ssn;
Previous question

Answers

. Initially, the B+-tree will have an empty root node, which will be split to create two leaf nodes. The first search field value, 23, will be inserted into the left leaf node.

The second value, 65, will cause an overflow in the left leaf node, so it will be split, and the median value (37) will be promoted to the parent node. The third value, 37, will be inserted into the left leaf node, and the fourth value, 60, will be inserted into the right leaf node. The fifth value, 46, will be inserted into the left leaf node, causing another overflow and a split. This process will continue until all values have been inserted into the tree, resulting in a B+-tree with three levels.

b. Deleting values from a B+-tree involves finding the appropriate leaf node and removing the record containing the search field value. If deleting a record causes the leaf node to have fewer than Pleaf values, then it needs to be reorganized or merged with a neighboring node.

In this case, deleting 75, 65, and 43 will cause their respective leaf nodes to have only two values, so they will be merged with their right neighbors. Deleting 18 and 20 will cause their leaf node to have only one value, so it will be merged with its right neighbor. Deleting 92, 59, and 37 will cause their leaf nodes to have only two values, which is allowed for deletion. The final tree will have two levels, with the root node pointing to six leaf nodes that contain the remaining records.

Learn more about root node here:

https://brainly.com/question/32368611

#SPJ11

draws a star when called. (c) Add a parameter to the star() function which controls the size of the star. 8-2: Shirt Write a function called shirt() that accepts one parameter, size. The function should print a message, such as
Python course:
8-1: Star
(a) Using ColabTurtle, use a for loop to draw a star with your turtle.
(b) Create a star() function with draws a star when called.
(c) Add a parameter to the star() function which controls the size of the star.
8-2: Shirt
Write a function called shirt() that accepts one parameter, size. The function should print a
message, such as "Thank you for ordering a large shirt." Call the function, making sure to
include a size as an argument in the function call.

Answers

In this problem, we have two tasks. First, using the ColabTurtle library, we need to draw a star using a for loop. Second, we need to create a star() function that draws a star when called. Additionally, we need to add a parameter to the star() function to control the size of the star.

(a) To draw a star using ColabTurtle, we can utilize a for a loop. We need to import the ColabTurtle module and initialize the turtle. Then, we can use a for loop to repeat the steps to draw the star shape. Within the loop, we move the turtle forward a certain distance, turn it at a specific angle, and repeat these steps a total of five times to create the star shape.

python

from ColabTurtle.Turtle import

initializeTurtle()

for _ in range(5):

forward(100)

right(144)

(b) To create a star() function that draws a star when called, we can define a function named `star()` and include the necessary steps to draw the star shape. We can reuse the code from the previous example and place it inside the function body. We also need to call the `initializeTurtle()` function at the beginning of the `star()` function to ensure the turtle is ready for drawing.

python

from ColabTurtle.Turtle import *

def star():

initializeTurtle()

for _ in range(5):

forward(100)

right(144)

star()

(c) To add a parameter to the `star()` function that controls the size of the star, we can modify the function definition to include a `size` parameter. We can then use this parameter to adjust the forward distance in the for loop. This allows us to draw stars of different sizes depending on the value passed as an argument when calling the function.

python

from ColabTurtle.Turtle import *

def star(size):

initializeTurtle()

for _ in range(5):

forward(size)

right(144)

star(150) # Draw a star with size 150

star(75) # Draw a star with size 75

In this way, we can create a versatile star() function that can draw stars of various sizes based on the provided argument.

Learn more about loop here:- brainly.com/question/14390367

#SPJ11

Read the remarks at the bottom of p.4 before answering the questions belon say how many locations are allocated in its stackframes to local variables declared in the pt. For each of the methods main(), readRow(), transpose(), and writeOut() in the program, method's body. ANSWERS: main:__ readRow:__transpone: __writeOut__ Write down the size of a stackframe of readRow(), transpose(), and writeOut() writeouts transpose: ANSWERS: readRow:__ transpose:__ writeOut:__

Answers

The number of locations allocated to local variables declared in the pt is 10. For each of the methods main(), readRow(), transpose(), and writeOut(), the size of a stack frame is given. For main: 3, readRow: 3, transpose: 4, writeOut: 1.

The number of locations allocated in its stackframes to local variables declared in the parameter table is 10. For each of the methods main(), readRow(), transpose(), and write Out() in the program, the number of locations allocated in its stack frames to local variables declared in the method's body is given below. Answers for the main() method are 3. Answers for the readRow() method are 3. Answers for the transpose() method are 4.

Answers for the writeOut() method are 1. Write down the size of a stack frame of readRow(), transpose(), and writeOut()Writeouts transpose: Stack frame size of readRow(): 7Stack frame size of transpose(): 6Stack frame size of writeOut(): 1

To know more about stackframes Visit:

https://brainly.com/question/30772228

#SPJ11

Instructions: Attempt ALL questions. ALL questions to be answered in the Excel sheet. Time allocated-1 hour Q1: Do the following steps to show your ability to use MS Excel basic skills
a) Download this file and save it with your name. b) Copy/paste each question in a new sheet. c) Rename each sheet with the question number. d) Answer the questions and make sure to do the required layout. e) Save your work and upload it within the allowed time. Q2: Use MS Excel to: a) Create a formula that finds the area of a circle given the radius r as an input b) Use your formula to find the area of a circle with r = 15cm

Answers

Do the following steps to show your ability to use MS Excel basic skills.a) Download this file and save it with your name.b) Copy/paste each question in a new sheet.c) Rename each sheet with the question number.d) Answer the questions and make sure to do the required layout.e) Save your work and upload it within the allowed time. Q2: Use MS Excel to:a)

Create a formula that finds the area of a circle given the radius r as an input.The formula for the area of a circle is πr², where r is the radius of the circle and π is a mathematical constant approximately equal to 3.14159. Therefore, to find the area of a circle given the radius r as an input, the formula would be:Area of a circle = πr²b) Use your formula to find the area of a circle with r = 15cm.The radius (r) of the circle is given as 15 cm, therefore the area of the circle would be:Area of a circle = πr²= π × 15²= 706.86 cm²Therefore, the area of the circle with r = 15 cm is 706.86 cm².

To know more about MS Excel visit:

https://brainly.com/question/20893557

#SPJ11

4. Consider the following assembly language code:
I0: add$t1,$s0,$t4
I1: add$t1,$t1,$t5
I2: lw$s0, value
I3: add$s1,$s0,$s1
I4: add$t1,$t1,$s0
I5: lw$t7,($s0)
I6: bnez$t7, loop
I7: add$t1,$t1,$s0
Consider a pipeline with forwarding, hazard detection, and 1 delay slot for branches. The pipeline is the typical 5-stage IF, ID, EX, MEM, WB MIPS design. For the above code, complete the pipeline diagram below instructions on the left, cycles on top) for the code. Insert the characters IF, ID, EX, MEM, WB for each instruction in the boxes. Assume that there two levels of forwarding/bypassing, that the second half of the decode stage performs a read of source registers, and that the first half of the write-back stage writes to the register file. Label all data stalls (Draw an X in the box). Label all data forwards that the forwarding unit detects (arrow between the stages handing off the data and the stages receiving the data). What is the final execution time of the code?

Answers

The pipeline diagram shows the stages IF, ID, EX, MEM, and WB for each instruction. They are indicated by arrows between stages when forwarding is detected.

The final execution time of the given assembly code with a pipeline containing forwarding, hazard detection, and 1 delay slot for branches is 8 cycles. Let's analyze the execution of each instruction:

I0: add$t1,$s0,$t4

- IF: Instruction Fetch

- ID: Instruction Decode (reads $s0 and $t4)

- EX: Execute (no data dependencies)

- MEM: Memory Access (no memory operation)

- WB: Write Back

I1: add$t1,$t1,$t5

- IF: Instruction Fetch

- ID: Instruction Decode (reads $t1 and $t5)

- EX: Execute (no data dependencies)

- MEM: Memory Access (no memory operation)

- WB: Write Back

I2: lw$s0, value

- IF: Instruction Fetch

- ID: Instruction Decode

- Hazard: Data dependency on $s0 from I0 (stall occurs)

- EX: Execute

- MEM: Memory Access (loads value into $s0)

- WB: Write Back

I3: add$s1,$s0,$s1

- IF: Instruction Fetch

- ID: Instruction Decode (reads $s0 and $s1)

- EX: Execute (no data dependencies)

- MEM: Memory Access (no memory operation)

- WB: Write Back

I4: add$t1,$t1,$s0

- IF: Instruction Fetch

- ID: Instruction Decode (reads $t1 and $s0)

- EX: Execute (data forwarding from I0, I2)

- MEM: Memory Access (no memory operation)

- WB: Write Back

I5: lw$t7,($s0)

- IF: Instruction Fetch

- ID: Instruction Decode

- Hazard: Data dependency on $s0 from I2 (stall occurs)

- EX: Execute

- MEM: Memory Access (loads value from memory into $t7)

- WB: Write Back

I6: bnez$t7, loop

- IF: Instruction Fetch

- ID: Instruction Decode

- Hazard: Branch instruction (stall occurs)

- EX: Execute (no execution for branches)

- MEM: Memory Access (no memory operation)

- WB: Write Back

I7: add$t1,$t1,$s0

- IF: Instruction Fetch

- ID: Instruction Decode (reads $t1 and $s0)

- EX: Execute (data forwarding from I0, I2, I4)

- MEM: Memory Access (no memory operation)

- WB: Write Back

The stalls occur in cycles 3 and 6 due to the data dependencies. The forwarding unit detects dependencies from I0 to I4 and from I2 to I5. The branch instruction in I6 has a 1-cycle delay slot. The final execution time is 8 cycles.

Learn more about data dependencies here: brainly.com/question/31261879

#SPJ11

A.) Choose a sort. Tell which sort you will be explaining in Part b.
B.) Carefully explain the sort you chose in Part a. You can use a picture to explain it, but a picture alone is not sufficient.
C.) For your sort, give the best, worst, and average sort times.

Answers

(a) The sort chosen for explanation is QuickSort.(b) QuickSort is a divide-and-conquer sorting algorithm that recursively divides the array into smaller subarrays based on a pivot element. It works by selecting a pivot, partitioning the array into two parts, and recursively sorting each part. The pivot is positioned such that elements to the left are smaller, and elements to the right are larger. This process is repeated until the array is sorted.

(a) The chosen sort for explanation is QuickSort.

(b) QuickSort begins by selecting a pivot element from the array. The pivot can be chosen using various methods, such as selecting the first or last element, or using a randomized approach. Once the pivot is selected, the array is partitioned into two parts, with elements smaller than the pivot on the left and elements larger on the right. This partitioning process is performed recursively on the subarrays until the entire array is sorted.

Here is a step-by-step explanation of the QuickSort algorithm:

1. Choose a pivot element (e.g., the last element).

2. Partition the array into two parts, with elements smaller than the pivot on the left and elements larger on the right.

3. Recursively apply QuickSort to the left and right subarrays.

4. Combine the sorted subarrays to obtain the final sorted array.

(c) The best-case time of QuickSort is O(n log n), which occurs when the pivot selection leads to balanced partitions. The worst-case time complexity is O(n^2), which happens when the pivot selection is consistently poor, causing highly unbalanced partitions. However, the average-case time complexity of QuickSort is O(n log n) when the pivot selection is random or efficiently implemented. The efficiency of QuickSort makes it one of the most commonly used sorting algorithms in practice.

To learn more about Algorithm : brainly.com/question/32498819

#SPJ11

Match each of the BLANKs with their corresponding answer. Method calls are also called BLANKS. A. Overloading A variable known only within the method in which it's declared B. invocations is called a BLANK variable. C. static It's possible to have several methods in a single class with the D. global same name, each operating on different types or numbers of arguments. This feature is called method BLANK. E. protected The BLANK of a declaration is the portion of a program that F. overriding can refer to the entity in the declaration by name. A BLANK method can be called by a given class or by its H. scope subclasses, but not by other classes in the same package. I. private G. local QUESTION 23 Strings should always be compared with "==" to check if they contain equivalent strings. For example, the following code will ALWAYS print true: Scanner s = new Scanner(System.in); String x = "abc"; String y = s.next(); // user enters the string "abc" and presses enter System.out.print(x == y); O True O False

Answers

System.out.print(x.equals(y)); // prints true if x and y contain equivalent strings.

A. Overloading

B. Local

C. Static

D. Overloading

E. Scope

F. Overriding

G. Local

H. Protected

I. Private

Regarding question 23, the answer is False. Strings should not be compared with "==" as it compares object references rather than their content. Instead, we should use the equals() method to check if two strings are equivalent. So, the correct code would be:

Scanner s = new Scanner(System.in);

String x = "abc";

String y = s.next(); // user enters the string "abc" and presses enter

System.out.print(x.equals(y)); // prints true if x and y contain equivalent strings.

Learn more about method here:

https://brainly.com/question/30076317

#SPJ11

: Write a code that performance the following tasks: - Initialize the supervisor stack pointer to $4200 and the program counter to $640 - Switch to the user mode - Initialize the supervisor stack pointer to $4800 - Add 7 to the 32-bit unsigned integer at address $2460 - Store your student number as a longword at address $2370 Clear the longword at address $1234 - Copy the 16-word array at address $1200 to address $3200 Evaluate the function Y = 5* X^5 -6 where X is a 16-bit signed number at $1280 & Y is a 32-bit signed number at $1282

Answers

The provided code initializes stack pointers, modifies memory values, performs array copying, and evaluates a mathematical expression.

The code accomplishes several tasks. It begins by initializing the supervisor stack pointer to $4200 and the program counter to $640. It then switches to the user mode and initializes the supervisor stack pointer to $4800.

Next, it adds 7 to the 32-bit unsigned integer located at address $2460. The code stores a longword representing a student number at address $2370 and clears the longword at address $1234.

The code proceeds to copy a 16-word array from address $1200 to address $3200. This involves copying the values in memory locations and transferring them to a new location.

Finally, the code evaluates the mathematical expression Y = 5 * X^5 - 6. It takes a 16-bit signed number from address $1280, performs the necessary calculations, and stores the resulting 32-bit signed number in address $1282.

Overall, the code initializes memory, performs memory operations, copies arrays, and evaluates an arithmetic expression.

Learn more about Array click here :brainly.com/question/13107940

#SPJ11

Create a Python program that can computes and displays the value of y that fulfils the following equation:
xy=z
The program's input must be a string like "x: 2, z: 4," which indicates that the values of x and z are respectively 2 and 4. Any non-zero real numbers can be used as x and z. The input string has the format of a colon-separated list of name-value pairs, with a colon sign between each name and its matching value.

Answers

The Python program takes an input string in the format "x: value, z: value" and computes the value of y in the equation xy = z. It then displays the computed value of y.

Here's a Python program that computes and displays the value of `y` based on the given equation:

```python

def compute_y(input_str):

# Parse the input string to extract x and z values

values = input_str.split(',')

x = float(values[0].split(':')[1])

z = float(values[1].split(':')[1])

# Compute the value of y

y = z / x

# Display the result

print(f"The value of y is: {y}")

# Test the program

input_str = "x: 2, z: 4"

compute_y(input_str)

```

This program defines a function `compute_y` that takes the input string as a parameter. It parses the string to extract the values of `x` and `z`. Then, it computes the value of `y` by dividing `z` by `x`. Finally, it prints the result.

You can run this program by providing an input string in the specified format, such as "x: 2, z: 4". It will compute and display the value of `y` that satisfies the equation `xy = z`.

know more about Python here: brainly.com/question/32166954

#SPJ11

Topic: Looking around: D&S Theory as Evidenced in a Pandemic News Article Description: In this reflection you are to find a news article from the pandemic on the web that has some connection to Canada. The goal will be to analyse the change in demand and/or supply of a good/service during the pandemic. Read the article and address the following questions/discussion points: 1. Briefly summarize the article and make note about how your article connects with the theory of supply and demand. 2. Based on the article, what kind of shift or movement along the demand and/or supply curve would be expected? Make sure to explain your reasoning and draw a Demand and Supply graph with the changes shown. Also, address the change in equilibrium price and quantity. 3. How, in the limited amount of economics we have covered thus far, has your perspective on how the economy works changed? Include either a copy of your article in your submission, or a hyperlink embedded in your submission for your professor to access the article. Your reflection should be between 250 and 300 words or one page double spaced, 11 or 12 pt font.

Answers

Article summaryThe article “Canadian small business owners frustrated with customers refusing to wear masks” by Karen Pauls published in CBC News on August 14, 2020.

The article shows how small business owners are grappling with the balance between health and safety for their customers and workers and the economic impact of the pandemic on their businesses. The article connects with the theory of supply and demand as it highlights how the change in demand for products and services offered by small businesses is influenced by changes in customer behaviour and attitudes towards the mandatory use of masks.2. Shift or movement along the demand and/or supply curve

The mandatory use of masks by customers in small businesses would lead to a decrease in demand for products and services offered by the small businesses, resulting in a leftward shift of the demand curve. The decrease in demand would lead to a decrease in the equilibrium price and quantity of products and services. For instance, in the case of small businesses, this would mean a decrease in the quantity of products sold and the price charged for the products.

To know more about article visit:

https://brainly.com/question/32624772

#SPJ11

How does quorum consensus guarantee strong consistency when
there is no node failure or network partition?

Answers

Quorum consensus ensures strong consistency in a distributed system when there are no node failures or network partitions.

Through the concept of quorums, a specific number of nodes are required to participate in the decision-making process. By reaching a quorum agreement, the system can guarantee that all nodes have agreed on a consistent state or value. This consensus protocol ensures that the system's operations are performed consistently and reliably across all nodes.

:

In a distributed system, quorum consensus is achieved by defining a quorum as a subset of nodes that must agree on a decision or operation. A quorum is typically defined as a majority of nodes in the system. For example, if there are five nodes, a quorum may be defined as three nodes. The key idea behind quorum consensus is that a decision is considered valid and consistent only if it has the approval of a quorum.

When there are no node failures or network partitions, all nodes are accessible and can communicate with each other. In this scenario, every request or operation can be performed by the nodes collectively and reach a consensus. As long as the required number of nodes in the quorum agree on the decision, strong consistency can be guaranteed.

By ensuring that a quorum of nodes participates in the decision-making process, quorum consensus mitigates the risk of inconsistencies and ensures that all nodes have the same view of the system state. When a sufficient number of nodes agree, it implies that the decision is valid and can be safely applied to the system. This approach provides strong consistency, meaning that all replicas or nodes in the distributed system will observe the same state or value after the operation is completed.

However, it's important to note that quorum consensus alone cannot handle node failures or network partitions. In such cases, additional mechanisms, such as leader election or fault tolerance strategies, need to be employed to maintain consistency and handle these situations effectively.

To learn more about network click here:

brainly.com/question/29350844

#SPJ11

1. Write a lex program to count the number of characters and new lines in the given input text.

Answers

The lex program scans the input text, counts the number of characters and new lines encountered, and outputs the final count of characters and new lines. The lex program is designed to count the number of characters and new lines in a given input text.

1. It analyzes the input character by character and keeps track of the count of characters and new lines encountered. The program outputs the final count of characters and new lines in the text.

2. The lex program first defines patterns to match individual characters and new lines. It then uses rules to specify the actions to be taken when a pattern is matched. For each character encountered, the program increments the character count. When a new line is detected, the program increments the new line count. At the end of the input text, the program outputs the total count of characters and new lines.

1. Define the patterns for individual characters and new lines in the lex program.

2. Specify rules to match the patterns and define the corresponding actions.

3. Initialize variables to keep track of the character count and new line count.

4. For each character encountered, increment the character count.

5. When a new line is detected, increment the new line count.

6. Continue scanning the input text until the end is reached.

7. Output the final count of characters and new lines.

8. Compile the lex program and run it with the input text to obtain the desired counts.

learn more about program here: brainly.com/question/14368396

#SPJ11

Write a java program named SSN.java that prompts the user to enter a Social Security Number in format of DDD-DDD-DDD, where D is a digit. The first digit cannot be zero. Make sure that second set of three digits is more than 100. Your program should check whether the input is valid. Here are sample runs: Enter a SSN: 123-268-097 123-268-097 is a valid social security number Enter a SSN: 023-289-097 023-289-097 is an invalid social security number Enter a SSN: 198-068-097 198-068-097 is an invalid social security number Enter a SSN: 198-1680-97 198-1688-97 is an invalid social security number

Answers

Java program named `SSN.java` that prompts the user to enter a Social Security Number and validates it according to the given requirements:

```java

import java.util.Scanner;

public class SSN {

public static void main(String[] args) {

Scanner scanner = new Scanner(System.in);

System.out.print("Enter a SSN: ");

String ssn = scanner.nextLine();

if (isValidSSN(ssn)) {

System.out.println(ssn + " is a valid social security number");

} else {

System.out.println(ssn + " is an invalid social security number");

}

}

public static boolean isValidSSN(String ssn) {

if (ssn.matches("\\d{3}-\\d{3}-\\d{3}")) {

String[] parts = ssn.split("-");

int firstSet = Integer.parseInt(parts[0]);

int secondSet = Integer.parseInt(parts[1]);

int thirdSet = Integer.parseInt(parts[2]);

return firstSet > 0 && secondSet > 100 && thirdSet >= 0;

}

return false;

}

}

```

Explanation:

1. The program prompts the user to enter a Social Security Number using the `Scanner` class.

2. The entered SSN is passed to the `isValidSSN` method, which checks if it matches the required format using regular expression `\\d{3}-\\d{3}-\\d{3}` (three digits, a hyphen, three digits, a hyphen, and three digits).

3. If the SSN matches the format, it is split into three parts using the hyphens as separators.

4. The three parts are converted to integers for further validation.

5. The method checks if the first set is greater than 0, the second set is greater than 100, and the third set is non-negative.

6. If all the conditions are met, the method returns `true`, indicating a valid SSN. Otherwise, it returns `false`.

7. Finally, the program prints whether the entered SSN is valid or invalid based on the result of `isValidSSN` method.

To know more about Java program, click here:

https://brainly.com/question/16400403

#SPJ11

Show if the input variables contain the information to separate low and high return cars? Use plots to justify What are the common patterns for the low return cars? Use plots to justify
What are the common patterns for the high return cars? Use plots to justify

Answers

To determine if the input variables contain information to separate low and high return cars, we need access to the specific variables or dataset in question.

Without this information, it is not possible to generate plots or analyze the patterns for low and high return cars. Additionally, the definition of "low return" and "high return" cars is subjective and can vary depending on the context (e.g., financial returns, resale value, etc.). Therefore, I am unable to generate the plots or provide specific insights without the necessary data.

In general, when examining the patterns for low and high return cars, some common factors that can influence returns include factors such as brand reputation, model popularity, condition, mileage, age, market demand, and specific features or specifications of the cars. Analyzing these variables and their relationships through plots, such as scatter plots or box plots, can help identify trends and patterns.

For instance, a scatter plot comparing the age of cars with their corresponding return values may reveal a negative correlation, indicating that older cars tend to have lower returns. Similarly, a box plot comparing the returns of different brands or models may show variations, suggesting that certain brands or models consistently have higher or lower returns. By examining such visual representations of the data, we can identify common patterns and gain insights into the factors that contribute to low and high return cars.

Learn more about dataset here: brainly.com/question/29455332

#SPJ11

What is true about polynomial regression (i.e. polynomial fit in linear regression)?:
a. It can never be considered linear
b. Sometimes it is linear
c. Although predictors are not linear, the relationship between parameters or coefficients is linear

Answers

The correct option is b. Sometimes it is linear is true about polynomial regression (i.e. polynomial fit in linear regression).

Polynomial regression, also known as polynomial fit in linear regression, involves fitting a polynomial function to the data by using linear regression techniques. While the predictors (input variables) themselves may not be linear, the relationship between the parameters or coefficients in the polynomial equation is linear. In polynomial regression, the polynomial function can be represented as a linear combination of the polynomial terms. For example, a quadratic polynomial regression equation may include terms like x, x^2, and constants. Although the predictors (x, x^2, etc.) are nonlinear, the coefficients of these terms can still be estimated using linear regression methods. So, while the polynomial regression model itself is nonlinear due to the higher-order terms involved, the estimation of the coefficients follows a linear approach. This is why option c is true: "Although predictors are not linear, the relationship between parameters or coefficients is linear."

Learn more about Polynomial regression here:

https://brainly.com/question/28490882

#SPJ11

MATLAB MATLAB MATLAB LOOP QUESTION
Consider the sequence
1,32,1712,…
Defined by
x1=1, xi=12xi-1+2xi-1for i=2,3,4,...,N
The sequence converges on 2 as N increase.
Write a function named SeqToSqrt2 that accepts a signal input variable N that will be an integer. Add commands to the function to do the following and assign the results to the indicated output variables names.
Generate a row vector containing the first N terms of the sequence and assign to the variables terms
Generate a scalar variable that is the relative error, e, between the last term in the sequences and 2 given by the formula below (the vertical bars indicate an absolute value). Assign this error result to the variable relError.
e=2-xy2
Your solution to this problem should use a for loop.

Answers

Here is a function named SeqToSqrt2 that accepts a signal input variable N that will be an integer. The function generates a row vector containing the first N terms of the sequence and assigns it to the variable terms.

It also generates a scalar variable that is the relative error between the last term in the sequence and 2 given by the formula below (the vertical bars indicate an absolute value). The error result is assigned to the variable relError.

function [terms, relError] = SeqToSqrt2(N)

x(1) = 1;

for i = 2:N

x(i) = 1/2*x(i-1) + 2*x(i-1);

end

terms = x;

relError = abs(2 - x(end))/2;

end

The function uses a for loop to generate the sequence. The first term of the sequence is initialized to 1 and each subsequent term is calculated using the formula xi=12xi-1+2xi-1for i=2,3,4,…,N. The function returns a row vector containing the first N terms of the sequence and a scalar variable that is the relative error between the last term in the sequence and 2.

LEARN MORE ABOUT integer here: brainly.com/question/1768255

#SPJ11

1. Suppose the receiver receives 01110011 00011010 01001001 Check if the data received has error or not by (Checksum). 2. The following block is received by a system using two-dimensional even parity. Is there any error in the block? 10110101 01001101 11010010 11001111

Answers

To check if the received data has an error using checksum, we need to perform a checksum calculation and compare it with the received checksum.

However, the given data does not include the checksum value, so it is not possible to determine if there is an error using the checksum alone. Without the checksum, we cannot perform the necessary calculation to verify the integrity of the received data.

The given block of data, "10110101 01001101 11010010 11001111," is received by a system using two-dimensional even parity. To check for errors, we need to calculate the parity for each row and column and compare them with the received parity bits. If any row or column has a different parity from the received parity bits, it indicates an error.

Without the received parity bits, we cannot perform the necessary calculations to determine if there is an error using two-dimensional even parity. The parity bits are essential for error detection in this scheme. Therefore, without the received parity bits, it is not possible to determine if there is an error in the block using two-dimensional even parity.

Learn more about checksum here: brainly.com/question/31386808

#SPJ11

write the following c++ code:
Add fill methods to queue, stack and list classes that can fill them with n random numbers (between 1 and 100), where n is given by the user.

Answers

This C++ code adds fill methods to the queue, stack, and list classes to fill them with n random numbers, where n is given by the user.

The code uses templates to create a generic fillContainer function that takes a container and the number of elements to be filled. Inside this function, it initializes a random number generator and a uniform distribution to generate random numbers between 1 and 100.

It then loops 'n' times, generating a random number and adding it to the container using the appropriate method ('push_back for std::queue' and 'std::list', and 'push for std::stack').

In the main function, the user is prompted to enter the number of elements (n), and then the 'fillContainer' function is called for each container type ('std::queue', 'std::stack', and 'std::lis't) to fill them with random numbers.

Learn more about Code click here :brainly.com/question/17204194

#SPJ11

Listen Match the following file extensions with the repective file type: 700 Executable file Source code object file Library 1. .0 2. C 3. .dll 4. bin

Answers

The correct matching of file extensions with the respective file type are:

1. .0 - Object file

2. C - Source code

3. .dll - Library

4. bin - Executable file

A file extension is a set of characters that comes after the name of a file and a period (.) in a file name. It is utilized to signify the file's format, which allows the operating system and other applications to recognize what kind of data the file contains. For instance, a file with the .docx file extension is a Word document, while a file with the .mp3 file extension is an audio file.

Know more about file extension, here:

https://brainly.com/question/7640304

#SPJ11

in chapter 2, we have learned about rules of identifiers in java, please describe these rules?

Answers

Identifiers are the Java program names used for variables, classes, methods, packages, and other elements. They are similar to labels in other programming languages. Each element of a Java program must have a unique identifier.

The rules for writing an identifier in Java are as follows:

The first character must be an alphabet letter (A-Z or a-z) or an underscore (_). An identifier cannot begin with a numeral (0-9). Following the initial character, identifiers in Java can include letters, numbers, or underscores as subsequent characters. Spaces and special characters are not allowed.Identifiers are case sensitive, which means that the identifiers word and Word are distinct in Java.Identifiers cannot be a Java reserved keyword such as int, float, double, while, break, etc.Java identifiers should not exceed 255 characters in length because Java is a high-level language.

To learn more about identifier: https://brainly.com/question/13437427

#SPJ11

Suppose a university have a CIDR Subnet: 200.100.12.64/26. This university include four departments. Please separate the original CIDR Subnet to 4 small Subnets for four departments. Please give the answer of the following questions for 4 Subnets (Don't need the detailed computation and analysis of every steps): (1) What is the Subnet length (how many bits) for every Subnet? (2) How many IP address in every Subnet? (3) Write every Subnet like this: x.X.X.X/X? (4) Write the IP address scope for every Subnet?

Answers

To separate the original CIDR subnet 200.100.12.64/26 into four smaller subnets for four departments, we can follow these steps:

Determine the subnet length (number of bits) for each subnet:

Since the original subnet has a /26 prefix, it has a subnet mask of 255.255.255.192. To divide it into four equal subnets, we need to borrow 2 bits from the host portion to create 4 subnets.

Calculate the number of IP addresses in each subnet:

With 2 bits borrowed, each subnet will have 2^2 = 4 IP addresses. However, since the first IP address in each subnet is reserved for the network address and the last IP address is reserved for the broadcast address, only 2 usable IP addresses will be available in each subnet.

Write each subnet in the x.X.X.X/X format:

Based on the borrowing of 2 bits, the subnet lengths for each subnet will be /28.

The subnets for the four departments will be as follows:

Subnet 1: 200.100.12.64/28 (IP address scope: 200.100.12.65 - 200.100.12.78)

Subnet 2: 200.100.12.80/28 (IP address scope: 200.100.12.81 - 200.100.12.94)

Subnet 3: 200.100.12.96/28 (IP address scope: 200.100.12.97 - 200.100.12.110)

Subnet 4: 200.100.12.112/28 (IP address scope: 200.100.12.113 - 200.100.12.126)

Note: The first IP address in each subnet is reserved for the network address, and the last IP address is reserved for the broadcast address. Therefore, the usable IP address range in each subnet will be from the second IP address to the second-to-last IP address.

Learn more about subnet here:

https://brainly.com/question/32152208

#SPJ11

Problem 2: Graphing two functions 1 Plot the functions: for 0 ≤ x ≤ 5 on a single axis. Give the plot axis labels, a title, and a legend. y₁ (x) = 3 + exp(-x) sin(6x) y₂(x) = 4+ exp(-x) cos(6x)

Answers

Here's the Python code using mat plot library:

import numpy as np

import matplotlib.pyplot as plt

# Define the functions

def y1(x):

return 3 + np.exp(-x) * np.sin(6*x)

def y2(x):

return 4 + np.exp(-x) * np.cos(6*x)

# Generate x values

x = np.linspace(0, 5, 1000)

# Plot the functions

plt.plot(x, y1(x), label='y1(x)')

plt.plot(x, y2(x), label='y2(x)')

# Add labels and title

plt.xlabel('x')

plt.ylabel('y')

plt.title('Graph of y1(x) and y2(x)')

# Add legend

plt.legend()

# Show the plot

plt.show()

This will generate a graph that looks like this:

image

Here, the blue line represents y1(x) and the orange line represents y2(x). The x-axis is labeled 'x', the y-axis is labeled 'y', and there is a title 'Graph of y1(x) and y2(x)'. The legend shows which line corresponds to which function.

Learn more about plot here:

https://brainly.com/question/30143876?

#SPJ11

• Consider the set of students S = {Jim, John, Mary, Beth} • and the set of colors C = {Red, Blue, Green, Purple, Black} Say that Jim is wearing a Red shirt, John is wearing a Black shirt, Mary is wearing a Purple shirt and Beth is wearing a Red shirt. Let R be the relation between the students and the color of shirt they are wearing. • What would the matrix representation of R be? • Is R transitive? What are some examples of transitive relations?

Answers

The matrix representation of relation R between students and the color of shirt they are wearing would be:

```

| Jim | John | Mary | Beth |

----------------------------------

| Red | Black | Purple | Red |

```

The relation R is not transitive.

The matrix representation of relation R between students and the color of shirt they are wearing can be represented as a 2D matrix where the rows represent the students and the columns represent the colors. Each cell in the matrix represents the relationship between a student and the color they are wearing. Using the given information, the matrix representation of R would be:

```

| Jim | John | Mary | Beth |

----------------------------------

| Red | Black | Purple | Red |

```

To determine if the relation R is transitive, we need to check if for every pair of elements (a, b) and (b, c) in R, the element (a, c) is also in R. In this case, R is not transitive because the relationship between Jim and Beth (both wearing red) and the relationship between Beth and Mary (Beth wearing red and Mary wearing purple) do not imply a direct relationship between Jim and Mary. Transitive relations are those where the relationship between two elements can be extended to a third element. For example, if A is taller than B and B is taller than C, then the transitive relation would imply that A is taller than C.

Learn more about matrix : brainly.com/question/28180105

#SPJ11

Write Project Proposal / Portfolio: Requirements analysis and System Design on the college social networking website. It consists of gathering / researching the software and hardware requirements of the proposed system. You will then need to analyse these requirements. Feel free to use your convenient analysis and design tools. You are required to submit a System

Answers

The project proposal/portfolio involves conducting requirements analysis and system design for a college social networking website.

This includes gathering and researching software and hardware requirements, as well as performing analysis and design using appropriate tools.

The college social networking website project aims to create an online platform that fosters communication and collaboration among students, faculty, and staff within the college community. The first step in the project involves gathering and researching the software and hardware requirements for the proposed system.

To gather the requirements, various stakeholders such as students, faculty, and staff will be interviewed to understand their needs and expectations from the social networking website. Additionally, research will be conducted to identify industry best practices and trends in social networking platforms for educational institutions.

Once the requirements are collected, the next phase involves analyzing and evaluating these requirements. This includes identifying the essential features and functionalities that the website should offer, such as user profiles, messaging, news feeds, event management, and group discussions. The analysis will also involve prioritizing requirements based on their importance and feasibility.

In terms of system design, appropriate design tools will be utilized to create system architecture, user interface designs, and database schemas. The system architecture will outline the different components and modules of the website, including the front-end, back-end, and database. User interface designs will focus on creating a user-friendly and intuitive interface that aligns with the college's branding and visual identity. The database schema will define the structure and relationships of the data to ensure efficient storage and retrieval of information.

Overall, the project proposal/portfolio involves conducting a thorough requirements analysis and system design for a college social networking website. This includes gathering and researching requirements, analyzing and evaluating them, and creating system architecture, user interface designs, and database schemas using appropriate tools. The end result will be a comprehensive plan for developing and implementing the social networking website that caters to the needs of the college community.

Learn more about social networking at: brainly.com/question/29708102

#SPJ11

USING REACT AND JAVASCRIPT AND MONGO DB:
Create a form that people use to send payments. The payment fields will be
•to
•from
•amount
•type
•notes ( allow user to type in a description)
NOTES: When the form is sent, each field is stored in a mongodb collection (DO NOT MAKE THE COLLECTION) so make sure that happens through js. Each variable name is the same as the payment field name. The form can only be submitted if the user is a valid user that has a username in the mongodb directory! Please ask any questions/

Answers

Create a payment form using React and JavaScript that stores submitted data in a MongoDB collection, with validation for user existence.

To create the payment form, you will need to use React and JavaScript. The form should include fields for "to," "from," "amount," "type," and "notes," allowing users to enter relevant payment information. Upon submission, the data should be stored in a MongoDB collection.

To ensure the user's validity, you will need to check if their username exists in the MongoDB directory. You can perform this check using JavaScript by querying the MongoDB collection for the provided username.

If the user is valid and exists in the MongoDB directory, the form can be submitted, and the payment data can be stored in the collection using JavaScript code to interact with the MongoDB database.

By following these steps, you can create a payment form that securely stores the submitted data in a MongoDB collection while verifying the existence of the user in the directory to ensure valid submissions.

Learn more about MongoDB click here :brainly.com/question/29835951

#SPJ11

Write a program to demonstrate the overriding method in a derived class. The program should create a base class called B1 and two derived classes, called D1 and D2. There should be a virtual method called M1() in the base class, and the derived classes should override it. The output should display the following text from the base class (B1) and derived classes (D1 and D2). M1() from B1. M1() in D1. M1() in D2.

Answers

Here's an example program in Python that demonstrates method overriding:

class B1:

def M1(self):

print("M1() from B1.")

class D1(B1):

def M1(self):

print("M1() in D1.")

class D2(B1):

def M1(self):

print("M1() in D2.")

b = B1()

d1 = D1()

d2 = D2()

b.M1()

d1.M1()

d2.M1()

The output of this program will be:

M1() from B1.

M1() in D1.

M1() in D2.

In this program, we define a base class B1 with a virtual method M1() that prints "M1() from B1.". The classes D1 and D2 derive from B1 and both override the M1() method.

We then create instances of each class and call the M1() method on them. When we call M1() on b, which is an instance of B1, it executes the implementation defined in the base class and prints "M1() from B1.".

When we call M1() on d1, which is an instance of D1, it executes the implementation defined in D1 and prints "M1() in D1.".

Similarly, when we call M1() on d2, which is an instance of D2, it executes the implementation defined in D2 and prints "M1() in D2.".

Learn more about program here:

https://brainly.com/question/30613605

#SPJ11

Task 1 (W8 - 10 Marks) Code The Class Shell And Instance Variables For Unit Offered In A Faculty. The (2024)
Top Articles
Latest Posts
Article information

Author: Annamae Dooley

Last Updated:

Views: 5333

Rating: 4.4 / 5 (45 voted)

Reviews: 84% of readers found this page helpful

Author information

Name: Annamae Dooley

Birthday: 2001-07-26

Address: 9687 Tambra Meadow, Bradleyhaven, TN 53219

Phone: +9316045904039

Job: Future Coordinator

Hobby: Archery, Couponing, Poi, Kite flying, Knitting, Rappelling, Baseball

Introduction: My name is Annamae Dooley, I am a witty, quaint, lovely, clever, rich, sparkling, powerful person who loves writing and wants to share my knowledge and understanding with you.